
Comparison of Logistic Regression and Random Forest Models to

Predict Voting Outcomes

Darsh Kale

12/17/2022

Abstract

This paper compares logistic regression models with random forest models. The dataset examined

using these models is the 2021 National Public Opinion Reference Survey (NPORS), and the models pre-

dict the respondent’s political party vote. The datasets and the two models’ backgrounds and summaries

are presented. The implementation of these models is done in R. The final accuracy for the random

forest model is slightly higher, by a nonsignificant amount. Model interpretation and training time is

shown to be better for the logistic regression model. The variable importance plots reveal key features

of the dataset such as the respondent’s ideal government size. Newer model selection algorithms for

logistic regresssion and more comprehensive parameter optimization for random forests are identified as

potential improvements.

1. Introduction

1.1 Data Background

This research uses Logistic regression and random forests, two statistical techniques
for binary classification, to predict binary voting outcomes for respondents of the
2021 National Public Opinion Reference Survey (NPORS). This survey conducted
by the Pew Research Center collected data about voting, political affiliation, de-
mographics, religion, internet use, and more from 3937 U.S. adults. In total, the
respondents to the survey answered 41 questions, of which the majority consisted
of questions with categorical responses. Approximately sixty percent of the respon-
dents took the paper survey, while the rest took it online. The sample “draw was a

1

national, stratified random sample, with differential probabilities of selection across
the mutually exclusive strata” designed to represent the U.S. population. Thus,
an analysis conducted on this survey sample provides a reasonable conclusion for
the broader U.S. voting population.

This research uses a dataset with 62 explanatory variables: one for each of the 41
survey questions and additional ones that are categorical variables converted into
multiple binary variables. The survey question for whom the respondents voted has
three response options in addition to the representatives of the two primary par-
ties. To exclude observations who voted for any of these three additional response
options from the dataset is appropriate, as they account for a small percentage of
total votes and the U.S. follows a two-party system, namely the Republican and
Democratic parties. Next, we provide background on the two statistical techniques.

1.2 Methodology Background

The logistic function was invented in the 19th century to model population growth
and was first used as an alternative to the probit model for bioassay in 1943
(Cramer, 2002). A logistic regression model allows for predicting a categorical re-
sponse variable, whereas the linear regression model predicts a continuous response
variable based on the explanatory variables. The three types of logistic regression
based on the response variables are - binary, multinomial, and ordinal. This re-
search focuses on binary logistic regression, used when the response variable has
two outcomes. Given a linear relationship between the transformed response and
predictors, a logistic regression model provides an easy-to-interpret and implement
model without the need for parameter tuning. The use cases of logistic regression
are endless, ranging from applications in the medical field for disease prediction to
industrial engineering for equipment failure prediction.

Random Forests was developed more recently in 2001 by L. Breiman, who com-
bined his approach for bagging decision trees and T. K. Ho’s method to randomly
select features. Random forests were developed to improve traditional decision
tree models, particularly to reduce overfitting. Unlike logistic regression, random
forests can predict both categorical and continuous response variables. Random
forests create a “forest” of decision trees, where the trees draw data from the train-

2

ing data set with replacement. After applying other statistical techniques discussed
later, the final prediction is the average of the outputs of the decision trees. Like
logistic regression, random forests have a wide range of applications in several fields
like tech, finance, and medicine.

2. Methods And Materials

2.1 NPORS Dataset Preprocessing

Before using the survey dataset to train our models, we must transform it into a
usable condition. The first step of data preprocessing involves dealing with missing
data and incorrect categorical responses. The dataset is primarily categorical, and
imputing missing data with the most frequent value could potentially introduce bias
into the data (Palczewska et al., 2014). Thus, we decide to drop rows with incorrect
or missing data. The next step of data cleaning is to check and remove features
that display multicollinearity. One measure of multicollinearity is VIF (Variation
Inflation Factor) which we use for assessing our data. Features that have VIF
values over 10, a popular cutoff threshold for VIF, are removed from our dataset.
Some other steps included in data preprocessing are removing features that cause
perfect separation in our data or have high ratios of missing data. The previous
data preprocessing steps are requirements for fitting logistical regression models,
and while random forests can inherently handle missing data and multicollinearity,
doing so before training often produces more reliable results (Genuer et al., 2010).
Finally, the data undergoes a 70:30 split for creating the training and testing sets
which will allows direct compare any models we fit in the results section.

2.2 Binary Logistic Regression

Binary Logistic regression is a regression model that predicts the probability of a
binary response variable given one or several explanatory variables. Equation 1
shows the logistic regression function. The left-hand side of this equation is known
as the log-odds or the logit function. The log-odds function maps the “probability
ranging between [0,1] to log odds ranging from (-inf,inf)” (Pampel, 2020). The log
of the probability odds is taken instead of odds because the odds (P(X)/1-P(X))

3

restrict the range of values to [0,inf). By not restricting the range of values as such,
the correlation between our response and predictors does not decrease. Similar to
linear regression, the relationship between the logit function and the data X is
assumed to be linear. For demonstration, the two classes our response variable can
be are “1” or “0.”

log(p(X)
1 − p(X)) = β0 + βX (1)

The inverse of the logit function, shown in equation 2, is known as the sigmoid
function. The output of this function is the probability that lies between [0, 1] for
our response variable being ‘1.’

p(X) = eβ0+βX

1 + eβ0+βX
(2)

For logistic regression parameter estimation, instead of using Ordinary Least
Squares (OLS) such as in linear regression models, Maximum Likelihood Esti-
mation (MLE) is the most accepted parameter estimation function. Both OLS
and MLE yield similar results, as noted in this study, where the MLE regression
provides better accuracy on average and produces predictions bounded by the [0,
1] range of the sigmoid function. OLS predictions may lie outside this range or
produce negative least squares values, which is why MLE is more popular than
OLS estimation for binary logistic regression (Pohlmann & Leitner, 2003). MLE
maximizes the likelihood function, given in equation 3, and can be re-written af-
ter substituting the formula for p(x) and transformed as a summation in equation
4. One approach to minimize this likelihood function is to differentiate the log-
likelihood function with respect to one of its components (for example: βk), set
the equation to zero, and solve as shown in equation 5.

L(β0, β) = Πn
i=1p(xi)y

i (1 − p(xi)1−yi) (3)

L(β0, β) =
n∑

i=1
− log 1 + eβ0+βX +

n∑
i=1

yi(β0 + xβ) (4)

∂l

∂βk

=
n∑

i=1
(yi − p(xi|β0, β))xij (5)

4

After fitting a logistic regression model and producing some probability p of the
response variable belonging to one of two possible classes, for demonstration we call
it class “1.” Then, we calculate a prediction by checking if p > threshold, then class
“1,” otherwise class “0.” The default threshold value is 0.5, but depending on case-
specific requirements, this can be optimized by finding the optimum point on the
ROC (Receiver Operating Characteristic) curve, which minimizes the false-positive
rate while maximizing the true-positive rate (Hoo et al., 2017). Unlike linear
regression, there are no stringent normality assumptions of residuals for logistic
regression. The main assumptions of logistic regression are: a linear relationship
must exist between log odds and independent variables, a large sample size with
independent observations and minimal strong outliers, and no multicollinearity
between independent variables (Pampel, 2020). Given these assumptions are met,
logistic regression provides a simple to implement and interpret model for binary
classification.

For our logistic regression model for predicting voting outcomes, we start by
assessing the assumptions stated earlier. The training sample size is large, and
we removed features with high multicollinearity during data preprocessing. Before
we check for the linear relationship between transformed response (log-odds) and
predictors, we first reduce our full model into a smaller model with fewer predictors.
We use backward stepwise regression, which removes predictors at each step until
the AIC no longer reduces. Doing so makes checking the linearity assumption
easier and prevents model overfitting to our sample, which is a common issue for
logistic regression. Other popular model selection algorithms we considered were
LASSO and Forward Stepwise Selection. While these algorithms may provide a
model that produces more accurate predictions on our testing dataset, often that
comes as a cost of overfitting our model to the dataset. Finally we decide our
threshold value for predicting based of the ROC curve, which we discuss in the
results section.

2.3 Random Forests for Binary Classification

Random forest is a supervised machine learning technique that averages multi-
ple decision trees, trained on random sub-samples of the training dataset with

5

replacement. Since random forests averages decision trees, decision trees are ex-
plained first before random forests. Like random forests, the decision tree is also
a supervised machine-learning technique, which can predict both continuous and
categorical variables. A decision tree has a tree structure, where the starting node,
known as the root node, divides the data into two or more mutually exclusive
subsets, which are called decision nodes. These decision nodes further split the
data on a feature selected by calculating node purity by the “Gini Index” shown
by equation 6. (Song & Ying, 2015)

Gini Index = 1 −
n∑

i=1
(Pi)2 (6)

Pi in the equation above is the probability of data belonging to the subset
where the feature of the node belongs to class “i.” The decision tree algorithm
selects features with a low Gini score (and therefore low impurity) at each node.
The Gini Index is the most popular method to compute decision tree features due
to its computational efficiency. The decision tree computes nodes until the data
cannot be split further (or some stop mechanism is met), where the final nodes are
known as the leaf nodes. These leaf nodes are split from decision trees using the
response variable as the final prediction feature (Song & Ying, 2015).

The random forest algorithm employs random sub-sampling of the training
dataset on which decision trees are created, a technique known as Bootstrap Ag-
gregation developed by L. Breiman. The issue with only employing bootstrap
aggregation is that the decision trees have a lot of structural similarity due to the
Gini Index selecting similar features for each tree, resulting in highly correlated
predictions. To avoid this, a random forest only trains the decision trees on the
subset of features, where the size of the subset is a parameter that must be speci-
fied to train the model. By default, the parameter is the square root of the total
number of explanatory variables by default. The random forest algorithm selects
the subset of features by prioritizing the most relevant features ranked by the Gini
Index. This process of random feature selection reduces the correlation between
the decision trees and also prevents overfitting. The final output of the random
forest is selected by a process known as Majority Voting in the classification case,
where the response most decision trees voted for is selected. This process of aver-

6

aging decision trees classifies random forest as an Ensemble Method (Palczewska
et al., 2014).

There are no distribution assumptions needed to be made for random forests,
nor does random forest require training data to have complete data. However,
compared to logistic regression models, random forest requires tuning three pa-
rameters for optimal results. The first, and most important parameter, is the
max number of features allowed for a decision tree. Generally, a larger number of
max features (decreases increasingly) results in more tree diversity, while a smaller
amount increases training speed. The second parameter is the number of trees,
which presents a tradeoff between computation speed and prediction precision.
The third parameter is the minimum number of sample leaves for the decision
tree, where a smaller number of leaves are more susceptible to data noise. The
most straightforward way to tune these parameters is by brute forcing multiple
parameter combinations and selecting the combination providing the best accu-
racy. There are several other parameters, like max decision tree depth, subsample
size, minimum samples per split, and others that can be tweaked depending on
case-specific conditions.

In our implementation for the random forest, we focus on optimizing our pa-
rameters to strike a balance between reasonable training times and high prediction
accuracy. Search algorithms are commonly used for optimizing parameters by find-
ing arguments that maximize or minimize model accuracy for a given parameter.
Note that it is possible to optimize other aspects of the model instead of accu-
racy, like true or false positive rates. Examples of search algorithms listed from
slowest to fastest are Grid Search, Random Search, Bayesian Optimization, and
Gradient Optimization to name a few. In our case, we optimize our parameters to
provide the best model accuracy using Grid Search. This approach allows us to
specify a range of values to test for each parameter, and while this takes a longer
training time, it also allows for greater control and a more comprehensive search
(Mohapatra et al., 2020)

7

Results

We fitted a logistical regression model using backward stepwise regression and
ended up with a model with 23 predictor variables. The model has an 85.00%
accuracy with a 95% confidence interval of [0.824, 0.876]. The ROC curve plot
shows the tradeoff between sensitivity and specificity (true-positive rate and false-
positive rates) for our model. We identify no issues from this plot since the curve
belongs to the top right quadrant, which strikes a good balance between the true
and false-positive rates. We test multiple threshold values and re-plot the ROC,
and finally choose 0.5 (the optimal threshold was approximately 0.543). The ROC
plot is displayed below (plot 1).

Plot 1: ROC Curve

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

1.0 0.5 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Our random forest model optimized using grid search produces an 87.07% accu-
racy, with a 95% confidence interval of [0.845, 0.897]. All decision tree parameters
were set to default values, as we focus on optimizing parameters unique to random
forests: max number of trees (trees=600) and feature subset size for decision trees
(features=6). Increasing the value for these two parameters results in diminishing
accuracy increases at the cost of longer training times. The grid search plot for
tuning feature subset size is displayed below (plot 2).

8

Next, we compare the results of the two models. We cannot use ANOVA or
F-Test to compare model accuracy because the models use different predictors.
However, the accuracies for the two models fall within each other’s 95% confidence
interval, indicating that the difference in accuracy may not be statistically signifi-
cant. When we look at the confusion matrix tables for each model, we see that the
logistic regression model more accurately predicted Republican respondents (LM:
83.7%, RF: 80.4%), while the random forest model was more accurate at predicting
Democratic respondents (LM: 85.8%, RF: 91.7%).

Finally, we compare the variable importance plots for the two models (Plot 3 and
4). The top three most important variables are the same for both models, but we
notice a difference for the fourth-ranked variable. In the random forest model, the
response to the question of whether the survey respondent’s race is black or African
American is not included in the top ten most important variables. Furthermore,
the ordering of these variables is different for both models. This difference can be
attributed to how variable importance is measured for the models. Random forest
models rank variables by mean decrease accuracy and Gini index, while logistic
regression relies on calculations using the varImp function from the caret package,

9

which uses the absolute value of the t-statistic for ranking variables by importance
(Kuhn, 2022). As a result, a direct comparison of the two variable importance
plots may be misleading.

Education Lvl

US Workforce

Age

Income

Books Read

Religion

Black or African American

Opinion on Corp.

Economic Outlook

Ideal Gov. Size

6 12

Plot 3: Logistic Regression Var. Imp.

VarImp Score

Marital Status
Books Read
Education Lvl
Race
Age
US Workforce
Income
Opinion on Corp.
Religion
Economic Outlook
Ideal Gov. Size

20 80 140

Plot 4: Random Forest Var. Imp.

Mean Decrease Accuracy

Conclusion

In conclusion, while random forests slightly outperform our logistic regression vot-
ing prediction accuracy, it is deemed statistically insignificant due to confidence
interval overlap. The accuracies for logistic regression and random forest are 85%
and 87%. The training and optimization of random forests took significantly longer
than the training and model selection for logistic regression. Other than the predic-
tions, it is hard to measure the impact of individual variables for the random forest
model due to its black-box-like nature. On the other hand, the logistic regression
model provides interpretable coefficients for each predictor. For example, figure 1
below shows that a respondent with a negative economic outlook will have smaller
prediction log odds, increasing the probability of being classified as a Republican
by our model. An advantage of random forest models is that they do not have any
statistical assumptions and that they can capture nonlinear relationships within
the data, unlike logistic regression.

10

Figure 1: Logistic Regression Coefficients

The variable importance plots helped identify two variables of interest: “Ideal
Government Size” and “Is respondent Black or African American.” After plotting
these two variables by respondent political affiliation we notice clear trends. In
plot 6, we see that respondents who prefer a smaller government are more likely to
vote for Republicans, and vice-versa. Plot 5 shows that Black/African American
voters are more likely to vote Democrat.

This study can be improved by testing newer methods for model selection for
logistic regression, such as “LASSO” or other gradient-boosting algorithms. Our
random forest models can be improved by doing a more comprehensive grid search
by increasing the range over which we fit models and also by optimizing decision
tree parameters which we forego in this paper. Furthermore, testing the most
frequent value imputation should on features with minimal missing value may prove
fruitful as it would reduce the number of data points that need to be dropped and
therefore increase our training dataset size. Overall, both methods provided highly
accurate predictions (85%+ accuracy) for our particular dataset, the 2021 NPORS
Survey Data.

11

References

Cramer, J. S. (2002). The origins of logistic regression.
Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using
random forests. Pattern Recognition Letters, 31 (14), 2225–2236.
Hoo, Z. H., Candlish, J., & Teare, D. (2017). What is an ROC curve? In Emergency
Medicine Journal (No. 6; Vol. 34, pp. 357–359). BMJ Publishing Group Ltd; the
British Association for Accident
Kuhn, M. (2022). Caret: Classification and regression training. https://CRAN.R-
project.org/package=caret
Mohapatra, N., Shreya, K., & Chinmay, A. (2020). Optimization of the random
forest algorithm. In Advances in data science and management (pp. 201–208).
Springer.
Palczewska, A., Palczewski, J., Marchese Robinson, R., & Neagu, D. (2014). Inter-
preting random forest classification models using a feature contribution method.
In Integration of reusable systems (pp. 193–218). Springer.
Pampel, F. C. (2020). Logistic regression: A primer (Vol. 132). Sage publications.
Pohlmann, J. T., & Leitner, D. W. (2003). A comparison of ordinary least squares
and logistic regression (1). The Ohio Journal of Science, 103 (5), 118–126.
Song, Y.-Y., & Ying, L. (2015). Decision tree methods: Applications for classifi-
cation and prediction. Shanghai Archives of Psychiatry, 27 (2), 130.

12

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

Appendix

Note: Parameter tuning functions are commented out due to long training time
(>2hrs)

library(dplyr)

library(ggplot2)

library(haven)

library(car)

library(detectseparation)

library(caret)

library(ROCR)

library(pROC)

library(tornado)

library(MASS)

df <- as.data.frame(read_sav("C:/Users/darsh/School/year4_temp/STAT 4893W/Independent Research Project/NPORS 2021.sav"))

dim(df)

[1] 3937 62

Drop columns: PARTY_AP21, PARTYLN_AP21, WEIGHT, BASEWEIGHT, INTERVIEW_START_AP21, INTERVIEW_END_AP21, DATERECEIVED_AP2

Reasons - columns are either redundant (we are predicting a variation of PARTY_AP) or are not valuable (too many NA, or no correlation with predicted val)

Drop single level factors - DEVICE1a_AP21, VOTED2020_AP21

dropped_columns <- c('PARTY_AP21', 'PARTYLN_AP21', 'WEIGHT', 'BASEWEIGHT', 'INTERVIEW_START_AP21', 'INTERVIEW_END_AP21', 'DATERECEIVED_AP21', 'DEVICE1a_AP21', 'VOTED2020_AP21', 'RESPID_AP21')

#df <- df %>% select(-dropped_columns)

df <- df[, !names(df) %in% dropped_columns]

replace values of "99" with NA for all categorical columns, and drop NA

df[-c(50, 31)] <- lapply(df[-c(50, 31)], gsub, pattern = "99", replacement = NA, fixed = TRUE)

df <- df %>% na.omit()

dim(df)

[1] 2428 52

13

Convert all columns to factors

index <- 1:ncol(df)

df[,index]<-lapply(df[,index], as.factor)

Convert some columns to numeric

df$AGE_AP21 <- as.numeric(df$AGE_AP21) # Age - Q33. (COLUMN 50 in df)

df$BOOKS1_AP21 <- as.numeric(df$BOOKS1_AP21) # number of books read - Q16. (COLUMN 31 in df)

df$ADULTSINHH_AP21 <- as.numeric(df$ADULTSINHH_AP21)

Relabel categories for plotting purposes

df$VOTEGEN_POST_AP21 <- droplevels(df$VOTEGEN_POST_AP21)

levels(df$VOTEGEN_POST_AP21) <- c("Republican", "Democrat", "Libertarian", "Green", "other")

df$GENDER_AP21 <- droplevels(df$GENDER_AP21)

levels(df$GENDER_AP21) <- c('Male', 'Female', 'Other')

levels(df$RACECMB_AP21) <- c('White', 'Black or African American', 'Asian or Asian American', 'American Indian or Alaska Native', 'Native Hawaiian or Pacific Islander', 'Other')

vif(glm(VOTEGEN_POST_AP21 ~.,family=binomial(link='logit'), data=df))

GVIF Df GVIF^(1/(2*Df))

MODE_AP21 1.171298 1 1.082265

LANG_AP21 1.361224 1 1.166715

STRATUM_AP21 2.922290 5 1.113198

ECON1MOD_AP21 1.523089 3 1.072641

ECON1BMOD_AP21 1.330872 2 1.074074

TYPOLOGYb_AP21 1.279029 1 1.130942

GOVSIZE1_AP21 1.312094 1 1.145467

SOCTRUST_AP21 1.197837 1 1.094458

VET1_AP21 1.611636 3 1.082791

VOL12_CPS_AP21 1.265306 1 1.124858

14

ROBWRK_AP21 1.499962 3 1.069909

RESPFUT_AP21 1.343741 3 1.050476

COLSPEECH_AP21 1.133681 1 1.064745

EMINUSE_AP21 1.206621 1 1.098463

INTMOB_AP21 1.383377 1 1.176170

INTFREQ_AP21 2.501481 4 1.121436

HOMEINTSERV_AP21 1.473635 3 1.066756

SMUSE_a_AP21 1.302151 1 1.141118

SMUSE_b_AP21 1.342212 1 1.158539

SMUSE_c_AP21 1.323530 1 1.150448

SMUSE_d_AP21 1.746387 1 1.321509

SMUSE_e_AP21 1.611314 1 1.269375

SMUSE_f_AP21 1.316110 1 1.147218

SMUSE_g_AP21 1.458618 1 1.207732

SMUSE_h_AP21 1.460204 1 1.208389

SMUSE_i_AP21 1.393579 1 1.180500

BOOKS1_AP21 1.137477 1 1.066526

RADIO_AP21 1.126363 1 1.061303

SMART2_AP21 1.407133 1 1.186226

NHISLL_AP21 1.337124 1 1.156341

RELIG_AP21 4.662047 12 1.066246

REG_AP21 1.235868 2 1.054370

MARITAL_AP21 2.912607 5 1.112828

INSURANCE_AP21 1.189962 1 1.090854

HISP_AP21 2.277024 1 1.508981

RACECMB_AP21 17992.220109 4 3.403185

RACEMOD_1_AP21 45.299312 1 6.730476

RACEMOD_2_AP21 10.956179 1 3.310012

RACEMOD_3_AP21 17.208704 1 4.148338

RACEMOD_4_AP21 4.979489 1 2.231477

RACEMOD_5_AP21 1.866313 1 1.366131

RACEMOD_6_AP21 6.965462 1 2.639216

AGE_AP21 2.517975 1 1.586813

15

NATIVITY_AP21 2.128081 3 1.134135

GENDER_AP21 1.606944 2 1.125901

EDUCATION_AP21 2.567371 6 1.081743

ADULTSINHH_AP21 1.359518 1 1.165984

DISA_AP21 1.258766 1 1.121947

INCOME_AP21 3.537876 8 1.082172

REGION_AP21 1.656482 3 1.087755

METRO_AP21 1.189706 1 1.090737

Chech for multicollinearity using VIF (Variance Inflation Factor) & Drop columns accordingly (threshold = 10)

dropped_columns <- c('RACEMOD_1_AP21', 'RACEMOD_2_AP21', 'RACEMOD_3_AP21', 'RACEMOD_4_AP21', 'RACEMOD_5_AP21', 'RACEMOD_6_AP21')

df <- df[, !names(df) %in% dropped_columns]

add

#(inf_check <- check_infinite_estimates(glm_model))

#glm_model <- glm(VOTEGEN_POST_AP21 ~.,family=binomial(link='logit'), method='detect_separation', data=df)

Produce frequency tables

ft_party <- df %>% group_by(VOTEGEN_POST_AP21) %>% summarise(freq=n())

ft_gender <- df %>% group_by(GENDER_AP21) %>% summarise(freq=n())

ft_race <- df %>% group_by(RACECMB_AP21) %>% summarise(freq=n())

ft_party

A tibble: 5 x 2

VOTEGEN_POST_AP21 freq

<fct> <int>

1 Republican 949

2 Democrat 1373

3 Libertarian 40

4 Green 5

5 other 61

16

ggplot(df, aes(VOTEGEN_POST_AP21, fill = GENDER_AP21)) +

geom_bar(position = "dodge") + ggtitle("Political Party Vote Counts by Gender") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Gender")

0

200

400

600

800

Republican Democrat Libertarian Green other
Political Party

C
ou

nt

Gender

Male

Female

Other

Political Party Vote Counts by Gender

ggplot(df, aes(VOTEGEN_POST_AP21, fill = RACECMB_AP21)) +

geom_bar(position = "dodge")+ ggtitle("Political Party Vote Counts by Race") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Race")

17

0

250

500

750

1000

Republican Democrat Libertarian Green other
Political Party

C
ou

nt

Race

White

Black or African American

Asian or Asian American

American Indian or Alaska Native

Native Hawaiian or Pacific Islander

Political Party Vote Counts by Race

df <- df %>% filter(VOTEGEN_POST_AP21=="Republican" |VOTEGEN_POST_AP21=="Democrat")

df$VOTEGEN_POST_AP21 <- droplevels(df$VOTEGEN_POST_AP21)

ggplot(df, aes(VOTEGEN_POST_AP21, fill = ECON1BMOD_AP21)) +

geom_bar(position = "dodge") + ggtitle("Political Party Vote Counts by Economic Level") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Economic Level")

#

ggplot(df, aes(VOTEGEN_POST_AP21, fill = INCOME_AP21)) +

geom_bar(position = "dodge") + ggtitle("Political Party Vote Counts by Income") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Income Level")

#

ggplot(df, aes(VOTEGEN_POST_AP21, fill = RACECMB_AP21)) +

geom_bar(position = "dodge")+ ggtitle("Vote Counts by Race") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Race")

df$GOVSIZE1_AP21 <- droplevels(df$GOVSIZE1_AP21)

levels(df$GOVSIZE1_AP21) <- c('Small, Less Services', 'Large, More Services')

18

ggplot(df, aes(VOTEGEN_POST_AP21, fill = df$GOVSIZE1_AP21)) +

geom_bar(position = "dodge")+ ggtitle("Vote Counts by Ideal Government Size") + xlab("Political Party")+ylab("Count") + scale_fill_discrete(name = "Race")

0

300

600

900

Republican Democrat
Political Party

C
ou

nt

Race

Small, Less Services

Large, More Services

Vote Counts by Ideal Government Size

#set.seed(324923498792748273)

#for (i in range 1:10)

df$id <- 1:nrow(df)

train <- df %>% dplyr::sample_frac(.75)

test <- dplyr::anti_join(df, train, by = 'id')

train <- train[, !names(train) %in% c("id")]

test <- test[, !names(test) %in% c('id')]

glm.model <- glm(VOTEGEN_POST_AP21 ~.,family=binomial(link='logit'), data=train)

Final Model via backwards stepwise regression

19

COMMENTED OUT DUE TO LONG TRAINING TIME

#glm.model <- stepAIC(glm.model, direction=c("backward"))

probs <- predict(glm.model, newdata = test, type = "response")

roc_curve <- roc(test$VOTEGEN_POST_AP21~probs, plot=T, xlab="False Positive Rate", ylab="True Positive Rate",main="Plot 1: ROC Curve")

Plot 1: ROC Curve

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

1.0 0.5 0.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fitted.results <- predict(glm.model,test,type='response')

fitted.results <- ifelse(fitted.results <= 0.5,"Republican", "Democrat")

fitted.results <- as.factor(fitted.results)

levels(fitted.results) <- ordered(c("Democrat", "Republican"))

misClasificError <- mean(fitted.results != test$VOTEGEN_POST_AP21)

print(paste('Accuracy',1-misClasificError))

[1] "Accuracy 0.848275862068966"

confusionMatrix(data=fitted.results, reference=test$VOTEGEN_POST_AP21)

Confusion Matrix and Statistics

20

##

Reference

Prediction Republican Democrat

Republican 187 46

Democrat 42 305

##

Accuracy : 0.8483

95% CI : (0.8165, 0.8765)

No Information Rate : 0.6052

P-Value [Acc > NIR] : <2e-16

##

Kappa : 0.6835

##

Mcnemar’s Test P-Value : 0.7491

##

Sensitivity : 0.8166

Specificity : 0.8689

Pos Pred Value : 0.8026

Neg Pred Value : 0.8790

Prevalence : 0.3948

Detection Rate : 0.3224

Detection Prevalence : 0.4017

Balanced Accuracy : 0.8428

##

’Positive’ Class : Republican

##

fitted.results.numeric <- ifelse(fitted.results == "Republican", 1, 2)

ROCRpred <- prediction(fitted.results.numeric, as.numeric(test$VOTEGEN_POST_AP21))

ROCRperf <- performance(ROCRpred, measure = "tpr", x.measure = "fpr")

Find the threshold value that maximizes the F1 score

21

optimal <- which.max(as.double(performance(ROCRpred, "f")@y.values))

threshold <- perf@alpha.values[[1]][optimal]

Print the optimal threshold value

print(threshold)

library(randomForest)

library(mlbench)

library(caret)

library(e1071)

COMMENTED OUT DUE TO LONG TRAINING TIME

We choose other popular ntree values in range

ntree_test <- c(200, 300, 400, 500, 600, 700, 1000) and test them one by one and use ntree = 600 as it provides good accuracy and fast train time

rf.model <- randomForest(VOTEGEN_POST_AP21 ~., data=train, ntree=600)

#

#

control <- trainControl(method='repeatedcv',

number=10,

repeats=3,

search='grid')

#create tunegrid with 15 values from 1:15 for mtry to tunning model. Our train function will change number of entry variable at each split according to tunegrid.

#

tunegrid <- expand.grid(.mtry = (1:10))

#

rf_gridsearch <- train(VOTEGEN_POST_AP21 ~ .,

data = df,

method = 'rf',

metric = 'Accuracy',

tuneGrid = tunegrid)

#

22

best_mtry <- rf_gridsearch$bestTune[1]

print(rf_gridsearch)

plot(rf_gridsearch, main="Plot Grid Search Optimizing Feature Subset Size")

#mtry=5 selected

png(filename = "optim2.png")

plot(rf_gridsearch, main="Plot 2: Grid Search Optimizing Feature Subset Size")

dev.off()

glm.model <- glm(VOTEGEN_POST_AP21 ~.,family=binomial(link='logit'), data=train)

glm_imp <- varImp(glm.model, type=2, plot=T)

glm_imp[2] <- rownames(glm_imp)

glm_imp <- glm_imp[order(glm_imp$Overall, decreasing=T),]

glm_imp_head <- head(glm_imp, n=10)

glm_imp_head <- glm_imp_head[order(glm_imp_head$Overall, decreasing=F),]

l1 <- c('Ideal Gov. Size', 'Economic Outlook', 'Opinion on Corp.', 'Black or African American', 'Religion', 'Books Read', 'Income', 'Age', 'US Workforce', 'Education Lvl')

l1 <- rev(l1)

glm_imp_head['names'] <- l1

dotchart(glm_imp_head$Overall,labels=glm_imp_head$names,cex=.7,

main="Plot 3: Logistic Regression Variable Importance",

xlab="VarImp Score")

23

Education Lvl

US Workforce

Age

Income

Books Read

Religion

Black or African American

Opinion on Corp.

Economic Outlook

Ideal Gov. Size

4 6 8 10 12

Plot 3: Logistic Regression Variable Importance

VarImp Score

library(randomForest)

#print(rf.model)

rf.model <- randomForest(VOTEGEN_POST_AP21 ~., data=train, ntree=600, mtry=6, importance=T)

#out.importance <- round(importance(rf.model), 2)

#impToPlot <- importance(rf.model, scale=FALSE)

impToPlot <- rf.model$importance[,4]

dotplot_labels=c('Ideal Gov. Size', 'Economic Outlook', 'Religion', 'Opinion on Corp.', 'Income', 'US Workforce', 'Age', 'Race', 'Education Lvl', 'Books Read', 'Marital Status')

#dotchart(sort(impToPlot[,1])[35:45], xlab="Mean Decrease Gini Score", labels = rev(dotplot_labels), main='Variable Importance')

#dotchart(sort(impToPlot[,1])[35:45], xlab="%IncMSE")

dotchart(sort(impToPlot)[35:45], labels=rev(dotplot_labels), xlab="Mean Decrease Accuracy", main="Plot 4: Random Forest Variable Importance")

24

Marital Status

Books Read

Education Lvl

Race

Age

US Workforce

Income

Opinion on Corp.

Religion

Economic Outlook

Ideal Gov. Size

20 40 60 80 100 120 140

Plot 4: Random Forest Variable Importance

Mean Decrease Accuracy

fitted.results.rf <- predict(rf.model,test,type='response')

misClasificError.rf <- mean(fitted.results.rf != test$VOTEGEN_POST_AP21)

print(paste('Accuracy',1-misClasificError.rf))

[1] "Accuracy 0.855172413793103"

confusionMatrix(data=fitted.results.rf, reference=test$VOTEGEN_POST_AP21)

Confusion Matrix and Statistics

##

Reference

Prediction Republican Democrat

Republican 185 40

Democrat 44 311

##

Accuracy : 0.8552

95% CI : (0.8239, 0.8828)

25

No Information Rate : 0.6052

P-Value [Acc > NIR] : <2e-16

##

Kappa : 0.696

##

Mcnemar’s Test P-Value : 0.7434

##

Sensitivity : 0.8079

Specificity : 0.8860

Pos Pred Value : 0.8222

Neg Pred Value : 0.8761

Prevalence : 0.3948

Detection Rate : 0.3190

Detection Prevalence : 0.3879

Balanced Accuracy : 0.8470

##

’Positive’ Class : Republican

##

26

	1. Introduction
	1.1 Data Background
	1.2 Methodology Background

	2. Methods And Materials
	2.1 NPORS Dataset Preprocessing
	2.2 Binary Logistic Regression
	2.3 Random Forests for Binary Classification

	Results
	Conclusion
	References
	Appendix

